The Poincare group, the Dirac monopole and photon localisation

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1981 J. Phys. A: Math. Gen. 14 L73
(http://iopscience.iop.org/0305-4470/14/4/001)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 05:43

Please note that terms and conditions apply.

LETTER TO THE EDITOR

The Poincaré group, the Dirac monopole and photon localisation

H Bacry
Centre de Physique Theorique, CNRS, Case 907, 13288 Marseille, Cedex 2, France

Received 20 January 1981

Abstract

The Dirac quantisation of a magnetic monopole is readily derived from the Lie algebra of the Poincaré group (taken as a dynamical group). The representation can be reinterpreted in order to define a position operator for massless particles.

We intend to show that the Poincaré group acts on the space of states of an electrically charged particle moving in the field of a Dirac magnetic monopole. The quantisation of the magnetic charge readily follows from what we know of the Poincare group representations.

Many attempts have been made in the past for a group theoretical approach to the problem (Peres 1968, Lipkin et al 1969, Peshkin 1971). The most successful one was that of Lipkin et al (1969) who used a representation of the Euclidean group. Here we enlarge this group to the Poincaré group. Then no calculation is needed.

We consider a particle of charge e moving in the field \boldsymbol{B} created by a magnetic monopole g. Due to the rotational symmetry of the problem, we can use the Noether theorem to get the corresponding conserved quantity (angular momentum)

$$
\begin{equation*}
\boldsymbol{J}=\boldsymbol{r} \times \boldsymbol{\pi}-\lambda \boldsymbol{r} / \boldsymbol{r} \tag{1}
\end{equation*}
$$

where

$$
\begin{aligned}
& \boldsymbol{\pi}=\boldsymbol{p}-\boldsymbol{e} \mathbf{A} \\
& \boldsymbol{B}=\operatorname{curl} \boldsymbol{A}=g \boldsymbol{r} / r^{3} \\
& \lambda=\boldsymbol{e g} .
\end{aligned}
$$

We now consider the operators

$$
\begin{align*}
& \boldsymbol{p}=\boldsymbol{r} \tag{2}\\
& \boldsymbol{K}=\frac{1}{2}(r \boldsymbol{\pi}+\boldsymbol{\pi} r) \tag{3}\\
& H=r . \tag{4}
\end{align*}
$$

It is a simple matter to verify that the operators $\boldsymbol{J}, \boldsymbol{K}, \boldsymbol{P}, H$ span the Lie algebra of the Poincaré group. In fact:

$$
\begin{array}{ll}
{\left[J_{i}, J_{j}\right]=\mathrm{i} \varepsilon_{i j k} J_{k}} & {\left[J_{i}, P_{j}\right]=\mathrm{i} \varepsilon_{i j k} P_{k}} \\
{\left[J_{i}, K_{j}\right]=\mathrm{i} \varepsilon_{i j k} K_{n}} & {\left[K_{i}, P_{j}\right]=\mathrm{i} \delta_{i j} H} \\
{\left[K_{i}, K_{j}\right]=\mathrm{i} \varepsilon_{i j k} J_{k}} & {\left[K_{i}, H\right]=\mathrm{i} P_{i}}
\end{array}
$$

(all other commutators vanishing).

Obviously, since $H^{2}-P^{2}=0$ and $\lambda=\boldsymbol{J} \cdot \boldsymbol{P} / H$, we know that we have a representation of zero 'mass' and of 'helicity' $\lambda=e g$. Since the representation is unitary, the quantity eg is necessary a multiple of $\frac{1}{2}$.

We can now reinterpret this representation by making the following canonical transformation:

$$
\begin{aligned}
& \boldsymbol{r} \rightarrow-\boldsymbol{p} \\
& \boldsymbol{p} \rightarrow \boldsymbol{r} .
\end{aligned}
$$

Equations (1)-(4) now read

$$
\begin{align*}
& \boldsymbol{J}=\boldsymbol{R} \times \boldsymbol{p}+\lambda \boldsymbol{p} / p \tag{5}\\
& \boldsymbol{K}=p \boldsymbol{R} \tag{6}\\
& \boldsymbol{P}=\boldsymbol{p} \tag{7}\\
& H=p \tag{8}
\end{align*}
$$

with

$$
\begin{equation*}
\boldsymbol{R}=\boldsymbol{r}-e \mathbf{A}(-\boldsymbol{p}) \tag{9}
\end{equation*}
$$

where $\boldsymbol{A}(-\boldsymbol{p})$ is the Fourier transform of $\boldsymbol{A}(\boldsymbol{r})$. In formulae (5)-(8), the operator \boldsymbol{R} looks like a position operator for a massless particle with helicity λ. This seems to be in contradiction with the non-localisability of the photon. In fact, the components of \boldsymbol{R} are not commuting. Rather

$$
\begin{equation*}
\left[R_{i}, R_{j}\right]=-\mathrm{i} \lambda \varepsilon_{i j k} p_{k} / p^{3} . \tag{10}
\end{equation*}
$$

If we remember that there exists already a situation in physics where components of a position are not commuting, we could perhaps adopt \boldsymbol{R} as a vector position for a massless particle. The situation we are referring to is the one of a charged particle moving in a plane homogeneous magnetic field. The classical trajectory is circular and the coordinates of the centre of the trajectory have non-commuting quantum counterparts (Landau and Lifshitz). In the present situation, we have the interesting fact that if we consider photons of higher and higher energy, the right-hand side of (10) becomes smaller and smaller and photons become more and more localisable. This last remark seems to us a good argument in favour of \boldsymbol{R} as a good position operator.

The author is grateful to Professors A Peres and J Zak for their interest in the present work and to Professor Peshkin for his correspondence.

References

Landau L D and Lifshitz E M Quantum Mechanics 111 (Oxford: Pergamon)
Lipkin H, Weisberger W I and Peshkin M 1969 Ann. Phys. 53203
Peres A 1968 Phys. Rev. 1671449
Peshkin M 1971 Ann. Phys. 66542

