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LETTER TO THE EDITOR 

The Poincare group, the Dirac monopole and photon 
localisation 
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Centre de Physique Theorique, CNRS, Case 907, 13288 Marseille, Cedex 2, France 

Received 20 January 1981 

Abstract. The Dirac quantisation of a magnetic monopole is readily derived from the Lie 
algebra of the Poincard group (taken as a dynamical group). The representation can be 
reinterpreted in order to define a position operator for massless particles. 

We intend to show that the Poincart group acts on the space of states of an electrically 
charged particle moving in the field of a Dirac magnetic monopole. The quantisation of 
the magnetic charge readily follows from what we know of the PoincarC group 
representations. 

Many attempts have been made in the past for a group theoretical approach to the 
problem (Peres 1968, Lipkin et al 1969, Peshkin 1971). The most successful one was 
that of Lipkin et al (1969) who used a representation of the Euclidean group. Here we 
enlarge this group to the PoincarC group. Then no calculation is needed. 

We consider a particle of charge e moving in the field B created by a magnetic 
monopole g. Due to the rotational symmetry of the problem, we can use the Noether 
theorem to get the corresponding conserved quantity (angular momentum) 

J = r x m - hr/r  

m = p - e A  

B = curl A = gr / r3  

A = e g .  

where 

We now consider the operators 

p = r  

K = i(rm + n r )  

H = r. 

It is a simple matter to verify that the operators J ,  K ,  P, H span the Lie algebra of the 
Poincard group. In fact: 

[Ji, 41 = i&ijkJk [Ji, e]  = i&ijkPk 

[.Ti, K j ]  = kijkKn [Ki, q ]  = iSijH 

[Ki, Kj] = iEijkJk [Ki, H ]  = p i  

(all other commutators vanishing). 
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Obviously, since H 2  - P 2  = 0 and A = J * P/H,  we know that we have a represen- 
tation of zero ‘mass’ and of ‘helicity’ A = eg.  Since the representation is unitary, the 
quantity eg is necessary a multiple of +. 

We can now reinterpret this representation by making the following canonical 
transformation: 

r + - p  

p + r .  

Equations (1)-(4) now read 

J = R X p  + A p / p  ( 5 )  

K =pR (6) 
P = p  

H = p  

with 

R = r - e A ( - p )  (9) 
where A ( - p )  is the Fourier transform of A(r) .  In formulae (5) - (S) ,  the operator R 
looks like a position operator for a massless particle with helicity A. This seems to be in 
contradiction with the non-localisability of the photon. In fact, the components of R 
are not commuting. Rather 

If we remember that there exists already a situation in physics where components of 
a position are not commuting, we could perhaps adopt R as a vector position for a 
massless particle. The situation we are referring to is the one of a charged particle 
moving in a plane homogeneous magnetic field. The classical trajectory is circular and 
the coordinates of the centre of the trajectory have non-commuting quantum counter- 
parts (Landau and Lifshitz). In the present situation, we have the interesting fact that if 
we consider photons of higher and higher energy, the right-hand side of (10) becomes 
smaller and smaller and photons become more and more localisable. This last remark 
seems to us a good argument in favour of R as a good position operator. 

The author is grateful to Professors A Peres and J Zak for their interest in the present 
work and to Professor Peshkin for his correspondence. 
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